add fib cmake project
This commit is contained in:
13
lab02/fib/CMakeLists.txt
Normal file
13
lab02/fib/CMakeLists.txt
Normal file
@@ -0,0 +1,13 @@
|
||||
cmake_minimum_required(VERSION 3.10)
|
||||
|
||||
# Projektname
|
||||
project(fib)
|
||||
|
||||
# C++-Standard setzen
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED True)
|
||||
|
||||
# add includes
|
||||
include_directories(include)
|
||||
# Quellverzeichnis angeben
|
||||
add_executable(MyProject src/main.cpp)
|
||||
340
lab02/fib/include/matrix.h
Normal file
340
lab02/fib/include/matrix.h
Normal file
@@ -0,0 +1,340 @@
|
||||
/**
|
||||
* matrix.h a very simplistic class for m times n matrices.
|
||||
*/
|
||||
|
||||
#ifndef MATRIX_H
|
||||
#define MATRIX_H
|
||||
|
||||
#include <cmath>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
// A very simplistic vector class for vectors of size n
|
||||
class Vector {
|
||||
public:
|
||||
// constructors
|
||||
Vector(int n) : n_(n), data_(n_, 0) {}
|
||||
Vector(const Vector &other) = default;
|
||||
Vector(Vector &&other) = default;
|
||||
~Vector() = default;
|
||||
|
||||
// assignment operators
|
||||
Vector &operator=(const Vector &other) = default;
|
||||
Vector &operator=(Vector &&other) = default;
|
||||
|
||||
// element access
|
||||
double &operator()(int i) { return data_[i]; }
|
||||
const double &operator()(int i) const { return data_[i]; }
|
||||
|
||||
// getter functions for the dimensions
|
||||
int dim() const { return n_; }
|
||||
|
||||
// comparison operators
|
||||
bool operator==(const Vector &b) { return (data_ == b.data_); }
|
||||
bool operator!=(const Vector &b) { return (data_ != b.data_); }
|
||||
|
||||
// addition
|
||||
Vector &operator+=(const Vector &b) {
|
||||
for (int i = 0; i < n_; ++i) {
|
||||
operator()(i) += b(i);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// subtraction
|
||||
Vector &operator-=(const Vector &b) {
|
||||
for (int i = 0; i < n_; ++i) {
|
||||
operator()(i) -= b(i);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// scalar multiplication
|
||||
Vector &operator*=(double x) {
|
||||
for (int i = 0; i < n_; ++i) {
|
||||
operator()(i) *= x;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// dot product between two vectors
|
||||
double dot(const Vector &other) const {
|
||||
double sum = 0;
|
||||
for (int i = 0; i < n_; ++i) {
|
||||
sum += operator()(i) * other(i);
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
private:
|
||||
int n_; // vector dimension
|
||||
std::vector<double> data_; // the vectors entries
|
||||
};
|
||||
|
||||
inline double dot(const Vector &v1, const Vector &v2) { return v1.dot(v2); }
|
||||
|
||||
// Print the vector as a table
|
||||
inline std::ostream &operator<<(std::ostream &os, const Vector &a) {
|
||||
const int width = 10;
|
||||
const int precision = 4;
|
||||
|
||||
const auto originalPrecision = os.precision();
|
||||
os << std::setprecision(precision);
|
||||
|
||||
for (int i = 0; i < a.dim(); ++i) {
|
||||
os << std::setw(width) << a(i) << " ";
|
||||
}
|
||||
|
||||
os << "\n";
|
||||
|
||||
os << std::setprecision(originalPrecision);
|
||||
return os;
|
||||
}
|
||||
|
||||
// A very simple class for m times n matrices
|
||||
class Matrix {
|
||||
public:
|
||||
// constructors
|
||||
Matrix() : Matrix(0, 0) {}
|
||||
Matrix(int m, int n) : m_(m), n_(n), data_(m_ * n_, 0) {}
|
||||
Matrix(std::pair<int, int> dim) : Matrix(dim.first, dim.second) {}
|
||||
Matrix(int n) : Matrix(n, n) {}
|
||||
Matrix(const Matrix &other) = default;
|
||||
Matrix(Matrix &&other) = default;
|
||||
~Matrix() = default;
|
||||
|
||||
// assignment operators
|
||||
Matrix &operator=(const Matrix &other) = default;
|
||||
Matrix &operator=(Matrix &&other) = default;
|
||||
|
||||
// element access
|
||||
double &operator()(int i, int j) { return data_[i * n_ + j]; }
|
||||
const double &operator()(int i, int j) const { return data_[i * n_ + j]; }
|
||||
|
||||
// getter functions for the dimensions
|
||||
std::pair<int, int> dim() const { return std::pair<int, int>(m_, n_); }
|
||||
int dim1() const { return m_; }
|
||||
int dim2() const { return n_; }
|
||||
int numEntries() const { return data_.size(); }
|
||||
|
||||
// comparison operators
|
||||
bool operator==(const Matrix &b) { return (data_ == b.data_); }
|
||||
bool operator!=(const Matrix &b) { return (data_ != b.data_); }
|
||||
|
||||
// addition
|
||||
Matrix &operator+=(const Matrix &b) {
|
||||
for (int i = 0; i < m_; ++i) {
|
||||
for (int j = 0; j < n_; ++j) {
|
||||
operator()(i, j) += b(i, j);
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// subtraction
|
||||
Matrix &operator-=(const Matrix &b) {
|
||||
for (int i = 0; i < m_; ++i) {
|
||||
for (int j = 0; j < n_; ++j) {
|
||||
operator()(i, j) -= b(i, j);
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// scalar multiplication
|
||||
Matrix &operator*=(double x) {
|
||||
for (int i = 0; i < m_; ++i) {
|
||||
for (int j = 0; j < n_; ++j) {
|
||||
operator()(i, j) *= x;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// scalar division
|
||||
Matrix &operator/=(double x) {
|
||||
for (int i = 0; i < m_; ++i) {
|
||||
for (int j = 0; j < n_; ++j) {
|
||||
operator()(i, j) /= x;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// matrix product (only for square matrices of equal dimension)
|
||||
Matrix &operator*=(const Matrix &b) {
|
||||
if (dim1() != dim2()) {
|
||||
std::cout << "Error in matrix multiplication: no square matrix\n";
|
||||
} else if (dim1() != b.dim1() || dim2() != b.dim2()) {
|
||||
std::cout << "Error in matrix multiplication: dimensions do not match\n";
|
||||
} else {
|
||||
Matrix a = *this;
|
||||
Matrix &c = *this;
|
||||
const int m = dim1();
|
||||
for (int i = 0; i < m; ++i) {
|
||||
for (int j = 0; j < m; ++j) {
|
||||
for (int k = 0; k < m; ++k) {
|
||||
c(i, j) += a(i, k) * b(k, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
public:
|
||||
int m_; // first dimension
|
||||
int n_; // second dimension
|
||||
std::vector<double> data_; // the matrix' entries
|
||||
};
|
||||
|
||||
// Print the matrix as a table
|
||||
inline std::ostream &operator<<(std::ostream &os, const Matrix &a) {
|
||||
const int width = 10;
|
||||
const int precision = 4;
|
||||
|
||||
const auto originalPrecision = os.precision();
|
||||
os << std::setprecision(precision);
|
||||
|
||||
for (int i = 0; i < a.dim1(); ++i) {
|
||||
for (int j = 0; j < a.dim2(); ++j) {
|
||||
os << std::setw(width) << a(i, j) << " ";
|
||||
}
|
||||
if (i != a.dim1() - 1)
|
||||
os << "\n";
|
||||
}
|
||||
|
||||
os << std::setprecision(originalPrecision);
|
||||
return os;
|
||||
}
|
||||
|
||||
// matrix product
|
||||
inline Matrix operator*(const Matrix &a, const Matrix &b) {
|
||||
if (a.dim2() == b.dim1()) {
|
||||
int m = a.dim1();
|
||||
int n = a.dim2();
|
||||
int p = b.dim2();
|
||||
Matrix c(m, p);
|
||||
for (int i = 0; i < m; ++i) {
|
||||
for (int j = 0; j < p; ++j) {
|
||||
for (int k = 0; k < n; ++k) {
|
||||
c(i, j) += a(i, k) * b(k, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
return c;
|
||||
} else {
|
||||
return Matrix(0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
inline bool equalWithinRange(const Matrix &a, const Matrix &b,
|
||||
double eps = 1e-12) {
|
||||
if (a.dim1() != b.dim1() || a.dim2() != b.dim2())
|
||||
return false;
|
||||
|
||||
int m = a.dim1();
|
||||
int n = a.dim2();
|
||||
for (int i = 0; i < m; ++i) {
|
||||
for (int j = 0; j < n; ++j) {
|
||||
if (fabs(a(i, j) - b(i, j)) > eps) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// A very simple class for "3D-Matrices" (tensors) with dimension l x m x n
|
||||
class Matrix3D {
|
||||
public:
|
||||
// constructors
|
||||
Matrix3D(int l, int m, int n) : l_(l), m_(m), n_(n), data_(l) {
|
||||
for (int i = 0; i < l_; ++i) {
|
||||
data_[i] = std::vector<std::vector<double>>(m_);
|
||||
for (int j = 0; j < m_; ++j) {
|
||||
data_[i][j] = std::vector<double>(n_, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
Matrix3D(int n) : Matrix3D(n, n, n) {}
|
||||
Matrix3D(const Matrix3D &other) = default;
|
||||
Matrix3D(Matrix3D &&other) = default;
|
||||
~Matrix3D() = default;
|
||||
|
||||
// assignment operators
|
||||
Matrix3D &operator=(const Matrix3D &other) = default;
|
||||
Matrix3D &operator=(Matrix3D &&other) = default;
|
||||
|
||||
// element access
|
||||
double &operator()(int i, int j, int k) { return data_[i][j][k]; }
|
||||
const double &operator()(int i, int j, int k) const { return data_[i][j][k]; }
|
||||
|
||||
// getter functions for the dimensions
|
||||
int dim1() const { return l_; }
|
||||
int dim2() const { return m_; }
|
||||
int dim3() const { return n_; }
|
||||
|
||||
// comparison operators
|
||||
bool operator==(const Matrix3D &b) { return (data_ == b.data_); }
|
||||
bool operator!=(const Matrix3D &b) { return (data_ != b.data_); }
|
||||
|
||||
// addition
|
||||
Matrix3D &operator+=(const Matrix3D &b) {
|
||||
for (int i = 0; i < l_; ++i) {
|
||||
for (int j = 0; j < m_; ++j) {
|
||||
for (int k = 0; k < n_; ++k) {
|
||||
operator()(i, j, k) += b(i, j, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// substraction
|
||||
Matrix3D &operator-=(const Matrix3D &b) {
|
||||
for (int i = 0; i < l_; ++i) {
|
||||
for (int j = 0; j < m_; ++j) {
|
||||
for (int k = 0; k < n_; ++k) {
|
||||
operator()(i, j, k) -= b(i, j, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// scalar multiplication
|
||||
Matrix3D &operator*=(double x) {
|
||||
for (int i = 0; i < l_; ++i) {
|
||||
for (int j = 0; j < m_; ++j) {
|
||||
for (int k = 0; k < n_; ++k) {
|
||||
operator()(i, j, k) *= x;
|
||||
}
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// scalar division
|
||||
Matrix3D &operator/=(double x) {
|
||||
for (int i = 0; i < l_; ++i) {
|
||||
for (int j = 0; j < m_; ++j) {
|
||||
for (int k = 0; k < n_; ++k) {
|
||||
operator()(i, j, k) /= x;
|
||||
}
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
private:
|
||||
int l_; // first dimension
|
||||
int m_; // second dimension
|
||||
int n_; // third dimension
|
||||
std::vector<std::vector<std::vector<double>>> data_; // the tensors' entries
|
||||
};
|
||||
|
||||
#endif // MATRIX_H
|
||||
0
lab02/fib/src/main.cpp
Normal file
0
lab02/fib/src/main.cpp
Normal file
Reference in New Issue
Block a user